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Classical While-Program Equivalences

* A classical compiler rule: Joop unrolling.

UNROLLINGZ =
UNROLLING1 =

while g >0 do
while ¢ >0 do p.

P bl
if g>0 thenP

done.

done.

* Equivalent classical programs.



Quantum While-Programs Equivalences

* What If guantum programs?

UNROLLINGZ =
UNROLLING] =
M[q] = 0; P; whil 0 do M(q] = 0; P;
...... : .:@ q] = 0; P;
Miq] = 0; P; Wl;le " & e
M[q] =1 ifM[q] 0 then P M[q]=,1;,

* Features: coin- tOSS
* Measurements change states. /&

* Intrinsic non-deterministic nature.

* They are equivalent if M is projective. (M;M; = 6;;M;)



KAT-like Algebraic Reasoning

* Kleene Algebra with Tests: “Regular expressions” < programs:

UNROLLINGZ =
UNROLLING] = while M[q] ~ 0 do
while M|[q] = 0 do p.
F if M[q] =0 then P
done.
done.
| | 3
(mop)™my # (mop(mep + my - 1))"my

* What are the axioms? Are they sound and complete?



Algebraic Reasoning via NKA

SEMIRING LAwS

p+(g+r)=(p+q +r;

* Non-idempotent Kleene Algebra (NKA) bra—aip
(mop(mep + my - 1))"my o
= (moypmop + mopm, ) my 1p=pl=p;
T= eee s 0p = p0 = 0;
. Premises p(q+r) =pq+pr;
= (mop)*my mym; = &;;m; (p+q)r = pr+qr:

* Main theorem: algebraic derivation induces equivalence.

Axioms of NKA

STAR LAaws
1+pp" < p*;
g+pr<r—pqgr;

g+rp<r—qp <r;

PARTIAL ORDER LAWS
p=p;

P=qANg=p—op=gq;
pLghgsr—p=<r;

PEgAr<s—p+r=<q+s;
p=qgAr=<s— pr=<gs;

K

FNKA < Enc(S;) = Enc(Tl-)> — Enc(P) = Enc(Q),
i=1

_then [P] = [@Q]. Here Enc is the encoding to algebraic expressions.

( Theorem. For quantum programs P, Q, {S;}_1, {T;}_,, where [S;] = [T;] for all i. If R




Structure of Concepts

studied by Ying et al.
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Non-idempotent Kleene Algebra  smna

SEMIRING LAws STAR LAWS
p+(g+r)=(p+q)+r; 1+pp” <p’
. ptq=q+p; q+pr<r—pqsr;
* NKA removes idempotency from KA. pr0=p grrp<roap <7
cy plgr) = (pg)r;
¢ Maﬂy rU|eS Of KA are St||| 1N NKA 1Ip=pl=p; PARTIAL ORDER LAWS
0p = p0 = 0; P <p;
p(q+r) =pq+pr; PEGAqEp—oPp=g;
(p+q)r=pr+gr; p<gAqg<r—p<r;
' [ r<s— r s;
* Facts about NKA: == pPSqATSsoprrges

pP<gAr=<s—pr=<gs;

* Sound and complete models

* Rational power series over N = N U {oo} [Bloom&Esik, 2009]. Derivable rules in NKA

[Esik&Kuich, 2004]

* Weighted automata = RPS [Schutzenberger, 1961]. (fixed-point) (sliding)
* Complexity a* =1+ aa* (ab)*a = a(ba)*
* Deciding equation is PSPACE-complete. (positivity) (unrolling)
* Deciding inequality is undecidable [Eilenberg, 1974]. 0<a @' = (aa)" (1 + a)
(denesting)

(a+b) =a*(ba*)* = (a*bh)*a”



Encoding Quantum While-Programs

* Encode as “regular expressions”.

Enc(skip) = 1; Enc(q :=10)) =|E([[q == |0)]));

Enc(abort) = 0; Enc(q:=Ulq]) = E([q = Ulql]);

Enc(Py; P;) = Enc(Py) - Enc(P,)

b

Enc(case M|[q] 4 P; end) = z

i

E(M;) -

Enc(whileM[g]=1do P done) 1

e Kleene star: E* = E0 + EL + E% + -

11 N

- (E(My)Enc(P))”

E(Mo)

E: elementary operations = symbols

* “x" |s partially defined for quantum channels. lO ¢
« & =&+ &+ &+ -+ divergent sum 1

* Aim for a total Kleene star function.



Quantum Path Model

/

* Quantum processes take sum of all paths. h \v/ O
* Mo(ZnlOXOD) = 2410001, Mo(Xnl1X1]) = 0. i

* Need to distinguish different infinities.

distinguishable
Infinite states

* Quantum path model

* PO: generalization of guantum states
* Equivalence classes of quantum state multisets.
* Embeds quantum states.

* P: generalization of guantum channels
* [inearand monotone transformations of PO.
* Embeds quantum channels. quantum

distinguishable
Infinite channels

channels



Quantum Interpretation

* Ql Interprets expressions into QPM. * Ql Inverts encoding:
e int = (%, eval). * Qint(Enc(P)) = ([P])".
* eval: symbols = quantum channels. —s .
Qint(0) = O, Qint(e + f) = Qint(e) + Qint (), _ . ge fa expression
Qint (1) = Iy, Qe - ) = Qune(€); Quue (f), Interpretation encoding
Qui(@) = (eval(@)],  Quule) = Qun(e)". program semantics

* Axioms of NKA are sound and complete w.r.t. guantum interpretation.

Theorem. For expressions e, f over a finite alphabet, there is
I_NKA e = f < Vint: Qint(e) — Qint(f)

Insight: NKA captures all equations for quantum.

 Soundness leads to the main theorem.



Veritying Compliler Rule

Derivable equations in NKA:
* Revisit loop unrolling (denesting) (fixed-point)  (unrolling)

FNKA MMy =mi Amimy=0—

(a +b)* =a*(ba™*)* a* =14 aa*

(mop) my = (mop(mep +my - 1)) my.

* Main theorem :@Un

* More examples In the [
* Quantum specific rule:
* Real world application:



Quantum B6hm-Jacopini Theorem

* A normal form theorem:

\_

( Theorem. For quatum program P, there Is a quantum program with A
one while loop that is equivalent to P; pe == |0).
Here C Is an auxiliary classical space. )

* Observed In [Yu, 2019]. We give an algebraic proof to It.

* |dea:

 Reconstruct control flows.
* Prove equivalences via NKA.



NKA with Tests (NKAT)

e Classical tests serve two functionalities:
* Property test and branch guard.

° Quantum: separate concepts.

* NKA with Tests
* Quantum predicates: an effect algebra.
* EA (L,8D,0,¢e): 5 axioms.
* EA Is embedded in NKA.

e Quantum measurements: partitions (m;);e;.
* m;L € L and );;m;ie = e.

Property Branch
test guard
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o
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Propositional Quantum Hoare Logic

* NKAT encodes quantum Hoare triples:

Fpar tA}P{B} © Enc(P)b < a

AC A’ {AP{B’} B'CB

(Ax.Sk) {A} skip {A} (R.OR)

{A}P{B}
{AL}PJ{B} for all i

(Ax.Ab)  {Iy} abort {O} (R.IF) ,
{2 M:(Ai)}case M- P; end{B}

{BYP{C} C=M/(A)+M](B)
{C}while M = 1 do P done{A}

{A}P{B} {B}P{C}

{A}P;; P{C} (RLP)

(R.SC)

=

* Propositional QHL (a fragment of QHL [ving, 2011])

(Ax.Sk): 1la<a,
(Ax.Ab): 00<1,
(ROR): a<d Apb <ad AV <b—pb<a
| R (Nserpib < @) = (Sier mip)b < 2 maa
(RSC): pib<aAp,c<b— pipsc <3,
(R.LP) : pmoa+mib < b — (myp)*mea < moa + myb.

* Algebraic reasoning Is easier than matrix analysis.



Future Directions

* Applications
* Quantum NetKAT for guantum software-defined networks?
* Finer characterizations of quantum measurements?

 Automation

* Bisimulation and co-algebra for NKA?
* Faster equivalence checking of NKA equations.
* Algorithms deciding Horn formulae.

* Formal systems in Coq?
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