Algebraic Reasoning of Quantum Programs via Non-Idempotent Kleene Algebra

<u>Yuxiang Peng</u>, Mingsheng Ying, Xiaodi Wu 06/16/2022

Classical While-Program Equivalences

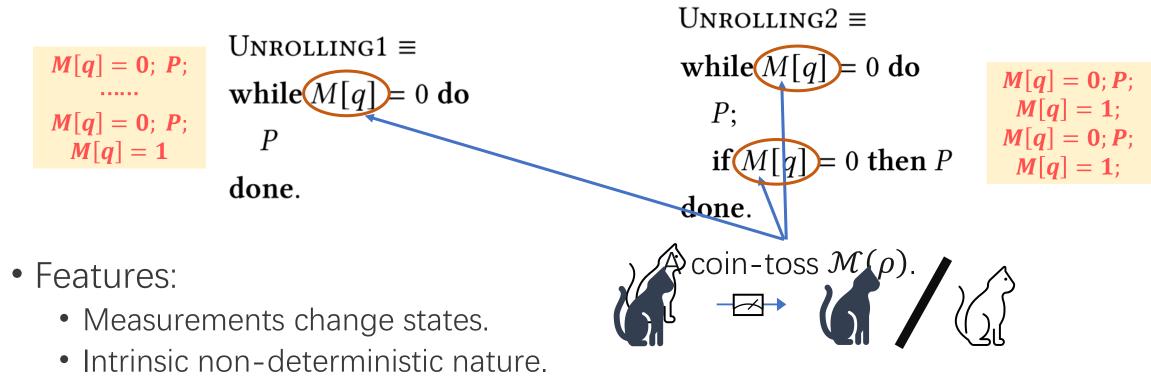
• A classical compiler rule: *loop unrolling*.

UNROLLING1 \equiv while q > 0 do Pdone. UNROLLING2 \equiv while q > 0 do P; if q > 0 then Pdone.

• Equivalent classical programs.

Quantum While-Programs Equivalences

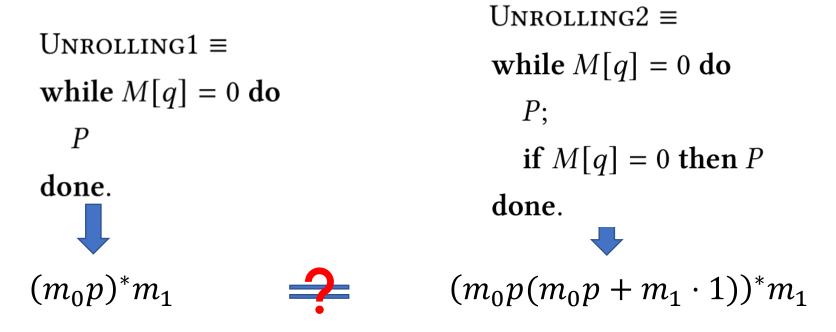
• What if quantum programs?



• They are equivalent if M is *projective*. $(\mathcal{M}_i \mathcal{M}_j = \delta_{ij} \mathcal{M}_i)$

KAT-like Algebraic Reasoning

• Kleene Algebra with Tests: "Regular expressions" ⇔ programs:



• What are the axioms? Are they *sound and complete*?

Algebraic Reasoning via NKA

• Non-idempotent Kleene Algebra (NKA) $(m_0p(m_0p + m_1 \cdot 1))^*m_1$ $= (m_0pm_0p + m_0pm_1)^*m_1$

 $= (m_0 p)^* m_1$

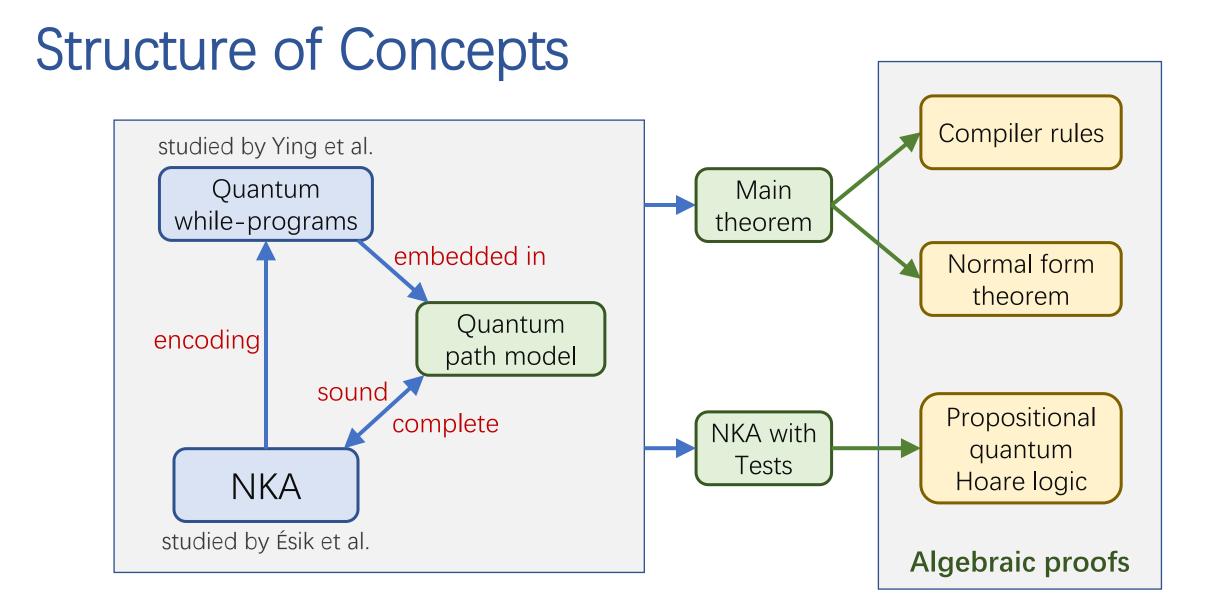
$$\begin{array}{c} \mathbf{Premises} \\ m_i m_j = \delta_{ij} m_i \end{array}$$

Axioms of NKA

Semiring Laws	Star Laws	
p + (q + r) = (p + q) + r;	$1 + pp^* \le p^*;$	
p+q=q+p;	$q + pr \le r \to p^*q \le r;$	
p+0=p;	$q + rp \le r \to qp^* \le r;$	
p(qr) = (pq)r;		
1p = p1 = p;	Partial Order Laws	
0p = p0 = 0;	$p \leq p;$	
p(q+r) = pq + pr;	$p \le q \land q \le p \longrightarrow p = q;$	
(p+q)r = pr + qr;	$p \le q \land q \le r \to p \le r;$	
	$p \le q \land r \le s \longrightarrow p + r \le q + s;$	

- $p \leq q \wedge r \leq s \rightarrow pr \leq qs;$
- *Main theorem*: algebraic derivation induces equivalence.

Theorem. For quantum programs
$$P, Q, \{S_i\}_{i=1}^k, \{T_i\}_{i=1}^k$$
, where $[S_i]] = [T_i]]$ for all i . If $\vdash_{NKA} \left(\bigwedge_{i=1}^k \operatorname{Enc}(S_i) = \operatorname{Enc}(T_i) \right) \rightarrow \operatorname{Enc}(P) = \operatorname{Enc}(Q),$ then $[P]] = [Q]]$. Here Enc is the encoding to algebraic expressions.



Non-idempotent Kleene Algebra Sem

- NKA removes idempotency from KA.
 - Many rules of KA are still in NKA.
- Facts about NKA:
 - Sound and complete models
 - Rational power series over $\overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\}$ [Bloom&ésik, 2009].
 - Weighted automata = RPS [Schützenberger, 1961].
 - Complexity
 - Deciding equation is PSPACE-complete.
 - Deciding inequality is undecidable [Eilenberg, 1974].

Axioms of NKA		
Semiring Laws	Star Laws	
p + (q + r) = (p + q) + r;	$1 + pp^* \le p^*;$	
p + q = q + p;	$q + pr \le r \to p^*q \le r;$	
p + 0 = p;	$q + rp \le r \to qp^* \le r;$	
p(qr) = (pq)r;		
1p = p1 = p;	PARTIAL ORDER LAWS	
0p = p0 = 0;	$p \leq p;$	
p(q+r) = pq + pr;	$p \leq q \land q \leq p \rightarrow p = q;$	
(p+q)r = pr + qr;	$p \leq q \land q \leq r \rightarrow p \leq r;$	
p ⇒p <p< td=""><td>$p \le q \land r \le s \longrightarrow p + r \le q +$</td></p<>	$p \le q \land r \le s \longrightarrow p + r \le q +$	
	$b \leq a \wedge r \leq s \rightarrow br \leq as$	

 $p \leq q \wedge r \leq s \rightarrow pr \leq qs;$

s;

Derivable rules in NKA [Ésik&Kuich, 2004] (fixed-point) (sliding) $a^* = 1 + aa^*$ $(ab)^*a = a(ba)^*$ (positivity) (unrolling) $a^* = (aa)^*(1+a)$ $0 \leq a$

(denesting) $(a + b)^* = a^*(ba^*)^* = (a^*b)^*a^*$

Encoding Quantum While-Programs

• Encode as "regular expressions".

Enc(skip) = 1; Enc($q := |0\rangle$) = $E(\llbracket q := |0\rangle \rrbracket)$; Enc(abort) = 0; Enc($\overline{q} := U[\overline{q}]$) = $E(\llbracket \overline{q} := U[\overline{q}] \rrbracket)$; Enc($P_1; P_2$) = Enc(P_1) · Enc(P_2); Enc(case $M[\overline{q}] \xrightarrow{i} P_i$ end) = $\sum_i E(\mathcal{M}_i) \cdot Enc(P_i)$; Enc(while $M[\overline{q}] = 1$ do P done) = $(E(\mathcal{M}_1) \cdot Enc(P))^* E(\mathcal{M}_0)$

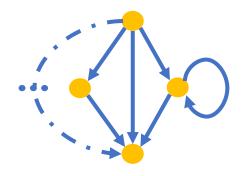
Е

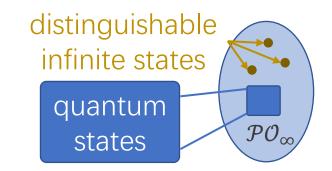
- Kleene star: $\mathcal{E}^* = \mathcal{E}^0 + \mathcal{E}^1 + \mathcal{E}^2 + \cdots$
 - "*" is partially defined for quantum channels.
 - $\mathcal{E}_{I}^{*} = \mathcal{E}_{I} + \mathcal{E}_{I} + \mathcal{E}_{I} + \cdots$: divergent sum
- Aim for a total Kleene star function.

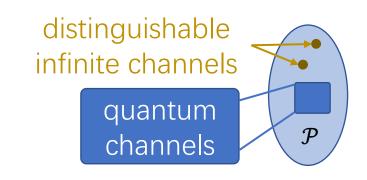
Quantum Path Model

• Quantum processes take *sum of all paths*.

- $\mathcal{M}_0(\sum_n |0\rangle\langle 0|) = \sum_n |0\rangle\langle 0|$, $\mathcal{M}_0(\sum_n |1\rangle\langle 1|) = 0$.
- Need to distinguish different infinities.
- Quantum path model
 - \mathcal{PO}_{∞} : generalization of *quantum states*
 - Equivalence classes of quantum state multisets.
 - Embeds quantum states.
 - \mathcal{P} : generalization of *quantum channels*
 - *Linear* and *monotone* transformations of \mathcal{PO}_{∞} .
 - Embeds quantum channels.







Quantum Interpretation

- QI interprets expressions into QPM.
 - int = (\mathcal{H} , eval).
 - eval: symbols \Rightarrow quantum channels. $Q_{int}(0) = O_{\mathcal{H}}, \qquad Q_{int}(e+f) = Q_{int}(e) + Q_{int}(f),$ $Q_{int}(1) = I_{\mathcal{H}}, \qquad Q_{int}(e \cdot f) = Q_{int}(e); Q_{int}(f),$ $Q_{int}(a) = \langle eval(a) \rangle^{\uparrow}, \qquad Q_{int}(e^*) = Q_{int}(e)^*.$

• QI inverts encoding:

•
$$Q_{\text{int}}(\text{Enc}(P)) = \langle \llbracket P \rrbracket \rangle^{\uparrow}.$$

• Axioms of NKA are sound and complete w.r.t. quantum interpretation.

Theorem. For expressions e, f over a finite alphabet, there is $\vdash_{NKA} e = f \iff \forall int: Q_{int}(e) = Q_{int}(f)$

Insight: NKA captures all equations for quantum.

• Soundness leads to the *main theorem*.

Verifying Compiler Rule

Revisit loop unrolling

 $\vdash_{\text{NKA}} m_1 m_1 = m_1 \land m_1 m_0 = 0 \rightarrow$

 $(m_0p)^*m_1 = (m_0p(m_0p + m_1 \cdot 1))^*m_1.$

(denesting) (fixed-point) (unrolling)
$$(a+b)^* = a^*(ba^*)^*$$
 $a^* = 1 + aa^*$ $a^* = (aa)^*(1+a)$

Derivable equations in NKA:

• Main theorem \Rightarrow [Unrolling1] = [Unrolling2] if $\mathcal{M}_i \circ \mathcal{M}_j = \delta_{ij} \mathcal{M}_i$.

- More examples in the paper

 - Quantum specific rule: loop boundary cancellation • Real world application: quantum signal processing

Quantum Böhm-Jacopini Theorem

• A normal form theorem:

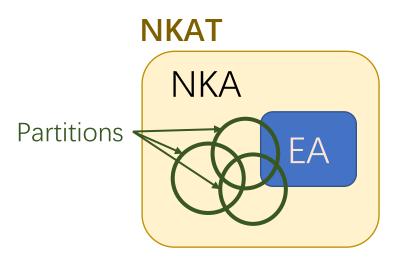
Theorem. For quatum program P, there is a quantum program with one while loop that is equivalent to P; $p_{\mathcal{C}} \coloneqq |0\rangle$. Here \mathcal{C} is an auxiliary classical space.

- Observed in [Yu, 2019]. We give an algebraic proof to it.
- Idea:
 - Reconstruct control flows.
 - Prove equivalences via NKA.

NKA with Tests (NKAT)

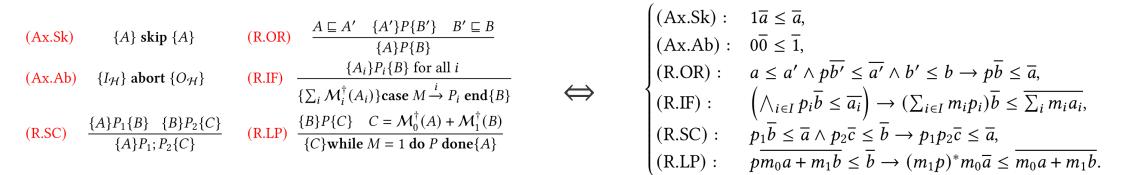
- Classical tests serve two functionalities:
 - Property test and branch guard.
- Quantum: separate concepts.
- NKA with Tests
 - Quantum predicates: an effect algebra.
 - EA (*L*,⊕, 0, *e*): 5 axioms.
 - EA is embedded in NKA.
 - Quantum measurements: partitions $(m_i)_{i \in I}$.
 - $m_i \mathcal{L} \subseteq \mathcal{L}$ and $\sum_{i \in I} m_i e = e$.

	Property test	Branch guard
Classical test		
Quantum predicate		×
Quantum measurement	×	



Propositional Quantum Hoare Logic

- NKAT encodes quantum Hoare triples: $\models_{par} \{A\}P\{B\} \iff \operatorname{Enc}(P)\overline{b} \leq \overline{a}$
- Propositional QHL (a fragment of QHL [Ying, 2011])



• Algebraic reasoning is easier than matrix analysis.

Future Directions

- Applications
 - Quantum NetKAT for quantum software-defined networks?
 - Finer characterizations of quantum measurements?
- Automation
 - Bisimulation and co-algebra for NKA?
 - Faster equivalence checking of NKA equations.
 - Algorithms deciding Horn formulae.
 - Formal systems in Coq?

Thanks

References

- [Ésik&Kuich, 2004] Zoltán Ésik and Werner Kuich.2004. Inductive *-semirings. Theoretical Computer Science 324, 1 (2004), 3–33
- [Bloom&Ésik, 2009] Stephen L Bloom and Zoltán Ésik. 2009. Axiomatizing rational power series over natural numbers. *Information and Computation* 207, 7 (2009), 793–811.
- [Schützenberger, 1961] M.P. Schützenberger. 1961. On the definition of a family of automata. *Information and Control* 4, 2 (1961), 245 270.
- [Eilenberg, 1974] Samuel Eilenberg. 1974. *Automata, languages, and machines.* Academic press.
- [Yu, 2019] Nengkun Yu. 2019. Quantum Temporal Logic. *arXiv e-prints*, Article arXiv:1908.00158 (July 2019).
- [Ying, 2011] Mingsheng Ying. 2011. Floyd–Hoare Logic for Quantum Programs. *ACM Transactions on Programming Languages and Systems* 33, 6 (2011).